Problem Link : StickerMix
Category : Math, Derangement
Contest : December Circuits'23
#include "bits/stdc++.h"
using namespace std;
#define endl '\n'
template <const int32_t MOD> struct modint {
int32_t value;
modint() = default;
modint(int32_t value_) : value(value_) {}
inline modint<MOD> operator + (modint<MOD> other) const { int32_t c = this->value + other.value; return modint<MOD>(c >= MOD ? c - MOD : c); }
inline modint<MOD> operator - (modint<MOD> other) const { int32_t c = this->value - other.value; return modint<MOD>(c < 0 ? c + MOD : c); }
inline modint<MOD> operator * (modint<MOD> other) const { int32_t c = (int64_t)this->value * other.value % MOD; return modint<MOD>(c < 0 ? c + MOD : c); }
inline modint<MOD> & operator += (modint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline modint<MOD> & operator -= (modint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }
inline modint<MOD> & operator *= (modint<MOD> other) { this->value = (int64_t)this->value * other.value % MOD; if (this->value < 0) this->value += MOD; return *this; }
inline modint<MOD> operator - () const { return modint<MOD>(this->value ? MOD - this->value : 0); }
modint<MOD> pow(uint64_t k) const { modint<MOD> x = *this, y = 1; for (; k; k >>= 1) { if (k & 1) y *= x; x *= x; } return y; }
modint<MOD> inv() const { return pow(MOD - 2); } // MOD must be a prime
inline modint<MOD> operator / (modint<MOD> other) const { return *this * other.inv(); }
inline modint<MOD> operator /= (modint<MOD> other) { return *this *= other.inv(); }
inline bool operator == (modint<MOD> other) const { return value == other.value; }
inline bool operator != (modint<MOD> other) const { return value != other.value; }
inline bool operator < (modint<MOD> other) const { return value < other.value; }
inline bool operator > (modint<MOD> other) const { return value > other.value; }
};
template <int32_t MOD> modint<MOD> operator * (int64_t value, modint<MOD> n) { return modint<MOD>(value) * n; }
template <int32_t MOD> modint<MOD> operator * (int32_t value, modint<MOD> n) { return modint<MOD>(value % MOD) * n; }
template <int32_t MOD> istream & operator >> (istream & in, modint<MOD> &n) { return in >> n.value; }
template <int32_t MOD> ostream & operator << (ostream & out, modint<MOD> n) { return out << n.value; }
const int mod = 1e9 + 7;
using mint = modint<mod>;
const int maxn = 1e6 + 5;
mint fact[maxn];
mint derangements[maxn];
mint nCr(int n, int r) {
return fact[n] / (fact[r] * fact[n - r]);
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cout.precision(12);
bool FILEIO = 1;
if (FILEIO and fopen("in.txt", "r")) {
freopen("in.txt", "r", stdin);
}
fact[0] = 1;
for (int i = 1; i < maxn; i++) {
fact[i] = i * fact[i - 1];
derangements[i] = i <= 2 ? i - 1 : (i - 1) * (derangements[i - 1] + derangements[i - 2]);
}
int tc;
cin >> tc;
for (int tcase = 1; tcase <= tc; tcase++) {
int n;
cin >> n;
for (int i = 0; i < n; i++) {
mint probability = nCr(n, i) * derangements[n - i] / fact[n];
cout << probability << " ";
}
mint probability = mint(1) / fact[n];
cout << probability << endl;
}
}
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.