Problem Link : Tree operations
Category : Approximate Problem
Contest : December Circuits'23
#include "bits/stdc++.h" using namespace std; #define int long long int #define endl '\n' using pii = pair<int, int>; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int Rand(int l, int r) { int rnd = uniform_int_distribution<int>(l, r)(rng); return rnd; } const int maxn = 2e5 + 5; const int logn = 20; int n; int k; int arr[maxn]; vector<vector<int>> graph; int depth[maxn]; int father[maxn][logn]; void dfs(int u, int p, int lvl) { depth[u] = lvl; for (int i = 1; i < logn; i++) { father[u][i] = father[ father[u][i - 1] ][i - 1]; } for (int v : graph[u]) { if (v == p) { continue; } father[v][0] = u; dfs(v, u, lvl + 1); } } int findLca(int u, int v) { if (depth[u] < depth[v]) { swap(u, v); } for (int i = logn - 1; i >= 0; i--) { if (depth[ father[u][i] ] >= depth[v]) { u = father[u][i]; } } if (u == v) { return u; } for (int i = logn - 1; i >= 0; i--) { if (father[u][i] != father[v][i]) { u = father[u][i]; v = father[v][i]; } } return father[u][0]; } vector<int> up(int u, int lca, bool isForV = false) { vector<int> curPath; do { curPath.emplace_back(u); if (u == lca) { break; } u = father[u][0]; } while (true); if (isForV) { reverse(curPath.begin(), curPath.end()); curPath.pop_back(); } return curPath; } int getEdgesSum(int u, int p) { int sum = 0; for (int v : graph[u]) { if (v == p) { continue; } int add = (arr[u] ^ arr[v]) * (arr[u] | arr[v]); sum += add + getEdgesSum(v, u); } return sum; } int solve(int &u, int &v, int operations) { u = Rand(1, n); v = Rand(1, n); int lca = findLca(u, v); vector<int> pathOfU = up(u, lca); vector<int> pathOfV = up(v, lca, true); vector<int> path; for (int x : pathOfU) { path.push_back(x); } for (int x : pathOfV) { path.push_back(x); } int sz = path.size(); int temp = arr[ path[0] ]; for (int i = 0; i < path.size(); i++) { int j = (i + 1) % sz; arr[ path[i] ] = j == 0 ? temp : arr[ path[j] ]; } int sum = getEdgesSum(1, 0); return sum * (k - operations + 1); } signed main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cout.precision(12); bool FILEIO = 1; if (FILEIO and fopen("in.txt", "r")) { freopen("in.txt", "r", stdin); } cin >> n >> k; graph.resize(n + 1); for (int i = 1; i <= n; i++) { cin >> arr[i]; } for (int e = 1; e < n; e++) { int u, v; cin >> u >> v; graph[u].push_back(v); graph[v].push_back(u); } dfs(1, 0, 1); int maxi = 0; int optimalOperation = 0; vector<pii> choosenNodes; for (int operations = 1; operations <= k; operations++) { int u; int v; int curSum = solve(u, v, operations); choosenNodes.push_back(pii(u, v)); if (curSum > maxi) { optimalOperation = operations; maxi = curSum; } } cout << optimalOperation << endl; for (int i = 0; i < optimalOperation; i++) { cout << choosenNodes[i].first << " " << choosenNodes[i].second << endl; } }
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.