Author : Dipu Kumar Mohanto
CSE, Batch - 6
BRUR.
Problem Statement : 1359 – Sabotaging Contest
Source : Light Online Judge
Category : Graph Theory
Algorithm : Dominator Tree
Verdict : Accepted
#include "bits/stdc++.h"
#include "ext/pb_ds/assoc_container.hpp"
#include "ext/pb_ds/tree_policy.hpp"
using namespace std;
using namespace __gnu_pbds;
#define FI freopen("in.txt", "r", stdin)
#define FO freopen("out.txt", "w", stdout)
#define FAST ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL)
#define FOR(i, n) for (int i = 1; i <= n; i++)
#define For(i, n) for (int i = 0; i < n; i++)
#define ROF(i, n) for (int i = n; i >= 1; i--)
#define Rof(i, n) for (int i = n-1; i >= 0; i--)
#define FORI(i, n) for (auto i : n)
#define ll long long
#define ull unsigned long long
#define vi vector <int>
#define vl vector <ll>
#define pii pair <int, int>
#define pll pair <ll, ll>
#define mk make_pair
#define ff first
#define ss second
#define eb emplace_back
#define em emplace
#define pb push_back
#define ppb pop_back
#define All(a) a.begin(), a.end()
#define memo(a, b) memset(a, b, sizeof a)
#define Sort(a) sort(All(a))
#define ED(a) Sort(a), a.erase(unique(All(a)), a.end())
#define rev(a) reverse(All(a))
#define sz(a) (int)a.size()
#define max3(a, b, c) max(a, max(b, c))
#define min3(a, b, c) min(a, min(b, c))
#define maxAll(a) *max_element(All(a))
#define minAll(a) *min_element(All(a))
#define allUpper(a) transform(All(a), a.begin(), :: toupper)
#define allLower(a) transform(All(a), a.begin(), :: tolower)
#define endl '\n'
#define nl puts("")
#define ub upper_bound
#define lb lower_bound
#define Exp exp(1.0)
#define PIE 2*acos(0.0)
#define Sin(a) sin(((a)*PIE)/180.0)
#define EPS 1e-9
// int dr[] = {1, -1, 0, 0}; // 4 Direction
// int dc[] = {0, 0, 1, -1};
// int dr[] = {0, 0, 1, -1, 1, 1, -1, -1}; // 8 Direction
// int dc[] = {1, -1, 0, 0, 1, -1, 1, -1};
// int dr[] = {-1, 1, -2, -2, -1, 1, 2, 2}; // knight Moves
// int dc[] = {-2, -2, -1, 1, 2, 2, 1, -1};
#define trace1(x) cerr << #x << ": " << x << endl;
#define trace2(x, y) cerr << #x << ": " << x << " | " << #y << ": " << y << endl;
#define trace3(x, y, z) cerr << #x << ": " << x << " | " << #y << ": " << y << " | " << #z << ": " << z << endl;
#define trace4(a, b, c, d) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << endl;
#define trace5(a, b, c, d, e) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << endl;
#define trace6(a, b, c, d, e, f) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << " | " << #f << ": " << f << endl;
inline int setbit(int mask, int pos) { return mask |= (1 << pos); }
inline int resetbit(int mask, int pos) { return mask &= ~(1 << pos); }
inline int togglebit(int mask, int pos) { return mask ^= (1 << pos); }
inline bool checkbit(int mask, int pos) { return (bool)(mask & (1 << pos)); }
#define popcount(mask) __builtin_popcount(mask) // count set bit
#define popcountLL(mask) __builtin_popcountll(mask) // for long long
inline int read() { int a; scanf("%d", &a); return a; }
inline ll readLL() { ll a; scanf("%lld", &a); return a; }
inline double readDD() { double a; scanf("%lf", &a); return a; }
template <typename T> string toString(T num) { stringstream ss; ss << num; return ss.str(); }
int toInt(string s) { int num; istringstream iss(s); iss >> num; return num; }
ll toLLong(string s) { ll num; istringstream iss(s); iss >> num; return num; }
template <typename T> using orderset = tree <T, null_type, less <T>, rb_tree_tag, tree_order_statistics_node_update>;
#define inf 123456789
#define mod 1000000007
static const int maxn = 1e5 + 5;
static const int logn = 18;
struct node
{
int v, w;
node(int v = 0, int w = 0) : v(v), w(w) {}
inline bool operator < (const node &p) const
{
return w > p.w;
}
};
vector <node> graph[maxn];
int dist[maxn], dom[maxn], depth[maxn], father[maxn][logn], subtreeSize[maxn];
vector <int> adj[maxn], par[maxn], topo;
vector <int> dominatorTree[maxn];
bool vis[maxn];
int N, M, Q;
inline void clean()
{
topo.clear();
For(i, maxn)
{
graph[i].clear();
adj[i].clear();
par[i].clear();
dominatorTree[i].clear();
vis[i] = 0;
depth[i] = 0;
subtreeSize[i] = 0;
}
}
inline void dijkstra(int src = 1)
{
For(i, maxn) dist[i] = inf;
priority_queue <node> PQ;
PQ.em(src, 0);
dist[src] = 0;
while (!PQ.empty())
{
node u = PQ.top(); PQ.pop();
for (node v : graph[u.v])
{
if (dist[v.v] > dist[u.v] + v.w)
{
dist[v.v] = dist[u.v] + v.w;
PQ.em(v.v, dist[v.v]);
}
}
}
}
inline void createDAG(int src = 1)
{
FOR(u, N)
{
for (node e : graph[u])
{
int v = e.v;
int w = e.w;
if (dist[v] != inf && dist[v] == dist[u] + w)
{
adj[u].eb(v);
par[v].eb(u);
}
}
}
}
inline void topologicalSort(int u = 1)
{
vis[u] = 1;
for (int v : adj[u])
{
if (vis[v]) continue;
topologicalSort(v);
}
topo.eb(u);
}
inline void addToTree(int u, int v) // u is parent of v in dominator tree
{
dom[v] = u; // immediate dominator
depth[v] = depth[u] + 1;
father[v][0] = u;
dominatorTree[u].eb(v); // make dominator tree
dominatorTree[v].eb(u);
for (int i = 1; i < logn; i++) father[v][i] = father[ father[v][i-1] ][i-1];
}
inline int LCA(int u, int v)
{
if (depth[u] < depth[v]) swap(u, v);
for (int i = logn-1; i >= 0; i--)
{
if (depth[ father[u][i] ] >= depth[v])
{
u = father[u][i];
}
}
if (u == v) return u;
for (int i = logn-1; i >= 0; i--)
{
if (father[u][i] != father[v][i])
{
u = father[u][i];
v = father[v][i];
}
}
return father[u][0];
}
void makeDominatorTree(int root = 1)
{
topologicalSort(root);
memo(father, 0);
memo(dom, -1);
depth[root] = 1;
int len = sz(topo);
for (int i = len-2; i >= 0; i--)
{
int u = topo[i];
int d = -1;
for (int v : par[u]) d = d == -1 ? v : LCA(d, v);
addToTree(d, u);
}
}
inline void dfs(int u = 1, int p = 0)
{
subtreeSize[u] = 1;
for (int v : dominatorTree[u])
{
if (v == p) continue;
dfs(v, u);
subtreeSize[u] += subtreeSize[v];
}
}
int main()
{
// FI;
int tc = read();
FOR(tcase, tc)
{
N = read(), M = read();
FOR(m, M)
{
int u = read();
int v = read();
int w = read();
u++, v++;
graph[u].eb(v, w);
graph[v].eb(u, w);
}
dijkstra();
createDAG();
makeDominatorTree();
dfs();
printf("Case %d:\n", tcase);
Q = read();
FOR(q, Q)
{
int K = read();
int lca = -1;
FOR(k, K)
{
int v = read();
v++;
if (!vis[v]) continue;
if (lca == -1) lca = v;
else lca = LCA(lca, v);
}
if (lca == -1) puts("0");
else printf("%d %d\n", depth[lca], subtreeSize[lca]);
}
clean();
}
}
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.