Sunday, January 6, 2019

[Light OJ] 1356 - Prime Independence

Author            : Dipu Kumar Mohanto 
                    CSE, Batch - 6
                    BRUR.
Problem Statement : 1356 - Prime Independence
Source            : Light Online Judge
Category          : Graph Theory, Number Theory
Algorithm         : Maximum Bipartite Matching, Maximum Independent Set, Fopcropt Carp Algorithm
                    Prime Factorization
Verdict           : Accepted
  #include "bits/stdc++.h"   using namespace std;   #define FI freopen("in.txt", "r", stdin) #define FO freopen("out.txt", "w", stdout) #define FAST ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL)   #define FOR(i, n) for (int i = 1; i <= n; i++) #define For(i, n) for (int i = 0; i < n; i++) #define ROF(i, n) for (int i = n; i >= 1; i--) #define Rof(i, n) for (int i = n-1; i >= 0; i--) #define FORI(i, n) for (auto i : n)   #define ll long long #define ull unsigned long long #define vi vector <int> #define vl vector <ll> #define pii pair <int, int> #define pll pair <ll, ll> #define mk make_pair #define ff first #define ss second #define eb emplace_back #define em emplace #define pb push_back #define ppb pop_back #define All(a) a.begin(), a.end() #define memo(a, b) memset(a, b, sizeof a) #define Sort(a) sort(All(a)) #define ED(a) Sort(a), a.erase(unique(All(a)), a.end()) #define rev(a) reverse(All(a)) #define sz(a) (int)a.size() #define max3(a, b, c) max(a, max(b, c)) #define min3(a, b, c) min(a, min(b, c)) #define maxAll(a) *max_element(All(a)) #define minAll(a) *min_element(All(a)) #define allUpper(a) transform(All(a), a.begin(), :: toupper) #define allLower(a) transform(All(a), a.begin(), :: tolower) #define endl '\n' #define nl puts("") #define ub upper_bound #define lb lower_bound #define Exp exp(1.0) #define PIE 2*acos(0.0) #define Sin(a) sin(((a)*PIE)/180.0) #define EPS 1e-9   // Important Functions // mo compare function : friend bool operator < (mo p, mo q) { int pb = p.l / block; int qb = q.l / block; if (pb != qb) return p.l < q.l; return (p.r < q.r) ^ (p.l / block % 2); } // factorial MOD inverse : ll inv[maxn]; inline ll factorialInverse() { inv[1] = 1; for (int i = 2; i < maxn; i++) inv[i] = (MOD – (MOD / i)) * inv[MOD % i) % MOD; }   /** * uses of PBDS: * 1) *X.find_by_order(k) : returns k'th element * 2) X.order_of_key(k) : count total element less than k * 3) All other operations same as set **/ #include "ext/pb_ds/assoc_container.hpp" #include "ext/pb_ds/tree_policy.hpp" using namespace __gnu_pbds;   template <typename T> using orderset = tree <T, null_type, less <T>, rb_tree_tag, tree_order_statistics_node_update>;   /** * uses of rope data structure: * Initialize : rope <data_type> Rope; * Insert single element : Rope.push_back() * Insert a block of elements : Rope.insert(position after insert, newRope) * Erase a block of elements : Rope.erase(starting position of deletion, size of deletion) * Other Operations : Same as std::vector * Iterator : Rope.mutable_begin(), Rope.mutable_end(), Rope.mutable_rbegin(), Rope.mutable_rend() * Caution : Never use -- Rope.begin() iterator **/ #include "ext/rope" using namespace __gnu_cxx;   // rope <int> Rope;   // int dr[] = {1, -1, 0, 0}; // 4 Direction // int dc[] = {0, 0, 1, -1}; // int dr[] = {0, 0, 1, -1, 1, 1, -1, -1}; // 8 Direction // int dc[] = {1, -1, 0, 0, 1, -1, 1, -1}; // int dr[] = {-1, 1, -2, -2, -1, 1, 2, 2}; // knight Moves // int dc[] = {-2, -2, -1, 1, 2, 2, 1, -1};   #define trace1(x) cerr << #x << ": " << x << endl; #define trace2(x, y) cerr << #x << ": " << x << " | " << #y << ": " << y << endl; #define trace3(x, y, z) cerr << #x << ": " << x << " | " << #y << ": " << y << " | " << #z << ": " << z << endl; #define trace4(a, b, c, d) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << endl; #define trace5(a, b, c, d, e) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << endl; #define trace6(a, b, c, d, e, f) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << " | " << #f << ": " << f << endl;   inline int setbit(int mask, int pos) { return mask |= (1 << pos); } inline int resetbit(int mask, int pos) { return mask &= ~(1 << pos); } inline int togglebit(int mask, int pos) { return mask ^= (1 << pos); } inline bool checkbit(int mask, int pos) { return (bool)(mask & (1 << pos)); }   #define popcount(mask) __builtin_popcount(mask) // count set bit #define popcountLL(mask) __builtin_popcountll(mask) // for long long   inline int read() { int a; scanf("%d", &a); return a; } inline ll readLL() { ll a; scanf("%lld", &a); return a; } inline double readDD() { double a; scanf("%lf", &a); return a; }   template <typename T> string toString(T num) { stringstream ss; ss << num; return ss.str(); } int toInt(string s) { int num; istringstream iss(s); iss >> num; return num; } ll toLLong(string s) { ll num; istringstream iss(s); iss >> num; return num; }   #define inf 1e17 #define mod 1000000007   static const int maxn = 4e4 + 5; static const int logn = 18; static const int mx = 500000 + 6;   vi primefactor[mx], primeList; bool isprime[mx];   inline void primeFactorization() { for (int i = 2; i < mx; i++) { if (isprime[i]) continue; primeList.eb(i); for (int j = 1; j*i < mx; j++) { isprime[i*j] = 1; primefactor[i*j].eb(i); } } }   inline void seive() { memo(isprime, 1); isprime[0] = isprime[1] = 0; for (int i = 4; i < mx; i += 2) isprime[i] = 0; for (int i = 3; i*i <= mx; i += 2) { if (isprime[i]) { for (int j = i*i; j < mx; j += i+i) { isprime[j] = 0; } } } primeList.eb(2); for (int i = 3; i < mx; i += 2) if (isprime[i]) primeList.eb(i); }   vi graph[maxn]; int n, arr[maxn], position[mx];   inline void clean() { For(i, maxn) graph[i].clear(); memo(position, -1); }   /** Hopcropt Carp Algorithm **/   #define inf 1 << 28 #define NILL 0   static const int MAXN = 4e4 + 5;   int elements_in_left_side; // no.of elements in left side int elements_in_right_side; // no.of elements in right side   // int pairU[MAXN], pairV[MAXN], dist[MAXN]; int match[MAXN], dist[MAXN]; // if we cannot divide the graph in two parts // use only match[]   inline void initialize_hopcroptcarp() { for (int i = 0; i < MAXN; i++) { // pairU[i] = NILL; // pairV[i] = NILL; match[i] = NILL; } }   inline bool bfs() { queue <int> PQ; for (int u = 1; u <= elements_in_left_side; u++) { if (match[u] == NILL) { dist[u] = NILL; PQ.push(u); } else { dist[u] = inf; } } dist[NILL] = inf; while (!PQ.empty()) { int u = PQ.front(); PQ.pop(); if (u != NILL && dist[u] < dist[NILL]) { for (int v : graph[u]) { if (dist[ match[v] ] == inf) { dist[ match[v] ] = dist[u] + 1; PQ.push(match[v]); } } } } if (dist[NILL] != inf) return true; else return false; }   inline bool dfs(int u) { if (u != NILL) { for (int v : graph[u]) { if (dist[ match[v] ] == dist[u] + 1) { if (dfs(match[v])) { match[u] = v; match[v] = u; return true; } } } dist[u] = inf; return false; } return true; }   inline int hopcropt_carp() { int max_match = 0; while (bfs()) { for (int u = 1; u <= elements_in_left_side; u++) { if (match[u] == NILL && dfs(u)) max_match++; } } return max_match; }   int main() { // FI; seive(); // primeFactorization(); // this cause MLE int tc = read(); FOR(tcase, tc) { clean(); n = read(); int maxnum = -1; FOR(i, n) { arr[i] = read(); position[ arr[i] ] = i; maxnum = max(maxnum, arr[i]); } FOR(i, n) { int num = arr[i]; // FORI(pf, primefactor[num]) // { // if (position[ num/pf ] != -1) // { // int u = position[ num/pf ]; // int v = i; // graph[u].eb(v); // graph[v].eb(u); // } // } for (int p : primeList) { int num2 = p * num; if (num2 > maxnum) break; if (position[num2] != -1) { int u = i; int v = position[num2]; graph[u].eb(v); graph[v].eb(u); } } } elements_in_left_side = n; elements_in_right_side = n; initialize_hopcroptcarp(); int maxmatch = hopcropt_carp(); int ans = n - maxmatch; printf("Case %d: %d\n", tcase, ans); } }  

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.