Author : Dipu Kumar Mohanto
CSE, Batch - 6
BRUR.
Problem Statement : 12887 - The Soldier's Dilemma
Source : UVA Online Judge
Category : Combinatorics
Algorithm : Catalan Number
Verdict : Accepted
- #include "bits/stdc++.h"
-
- using namespace std;
-
- #define FI freopen("in.txt", "r", stdin)
- #define FO freopen("out.txt", "w", stdout)
- #define FAST ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL)
-
- #define FOR(i, n) for (int i = 1; i <= n; i++)
- #define For(i, n) for (int i = 0; i < n; i++)
- #define ROF(i, n) for (int i = n; i >= 1; i--)
- #define Rof(i, n) for (int i = n-1; i >= 0; i--)
- #define FORI(i, n) for (auto i : n)
- #define REP(i, a, b) for (int i = a; i <= b; i++)
-
- #define ll long long
- #define ull unsigned long long
- #define vi vector <int>
- #define vl vector <ll>
- #define pii pair <int, int>
- #define pll pair <ll, ll>
- #define mk make_pair
- #define ff first
- #define ss second
- #define eb emplace_back
- #define em emplace
- #define pb push_back
- #define ppb pop_back
- #define All(a) a.begin(), a.end()
- #define memo(a, b) memset(a, b, sizeof a)
- #define Sort(a) sort(All(a))
- #define ED(a) Sort(a), a.erase(unique(All(a)), a.end())
- #define rev(a) reverse(All(a))
- #define sz(a) (int)a.size()
- #define max3(a, b, c) max(a, max(b, c))
- #define min3(a, b, c) min(a, min(b, c))
- #define maxAll(a) *max_element(All(a))
- #define minAll(a) *min_element(All(a))
- #define allUpper(a) transform(All(a), a.begin(), :: toupper)
- #define allLower(a) transform(All(a), a.begin(), :: tolower)
- #define endl '\n'
- #define nl puts("")
- #define ub upper_bound
- #define lb lower_bound
- #define Exp exp(1.0)
- #define PIE 2*acos(0.0)
- #define Sin(a) sin(((a)*PIE)/180.0)
- #define EPS 1e-9
-
- #include "ext/pb_ds/assoc_container.hpp"
- #include "ext/pb_ds/tree_policy.hpp"
- using namespace __gnu_pbds;
-
- template <typename T> using orderset = tree <T, null_type, less <T>, rb_tree_tag, tree_order_statistics_node_update>;
-
- #include "ext/rope"
- using namespace __gnu_cxx;
-
- // rope <int> Rope;
-
- // int dr[] = {1, -1, 0, 0}; // 4 Direction
- // int dc[] = {0, 0, 1, -1};
- // int dr[] = {0, 0, 1, -1, 1, 1, -1, -1}; // 8 Direction
- // int dc[] = {1, -1, 0, 0, 1, -1, 1, -1};
- // int dr[] = {-1, 1, -2, -2, -1, 1, 2, 2}; // knight Moves
- // int dc[] = {-2, -2, -1, 1, 2, 2, 1, -1};
-
- #define trace1(x) cerr << #x << ": " << x << endl;
- #define trace2(x, y) cerr << #x << ": " << x << " | " << #y << ": " << y << endl;
- #define trace3(x, y, z) cerr << #x << ": " << x << " | " << #y << ": " << y << " | " << #z << ": " << z << endl;
- #define trace4(a, b, c, d) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << endl;
- #define trace5(a, b, c, d, e) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << endl;
- #define trace6(a, b, c, d, e, f) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << " | " << #f << ": " << f << endl;
-
- inline int setbit(int mask, int pos) { return mask |= (1 << pos); }
- inline int resetbit(int mask, int pos) { return mask &= ~(1 << pos); }
- inline int togglebit(int mask, int pos) { return mask ^= (1 << pos); }
- inline bool checkbit(int mask, int pos) { return (bool)(mask & (1 << pos)); }
-
- #define popcount(mask) __builtin_popcount(mask) // count set bit
- #define popcountLL(mask) __builtin_popcountll(mask) // for long long
-
- inline int read() { int a; scanf("%d", &a); return a; }
- inline ll readLL() { ll a; scanf("%lld", &a); return a; }
- inline double readDD() { double a; scanf("%lf", &a); return a; }
-
- template <typename T> string toString(T num) { stringstream ss; ss << num; return ss.str(); }
- int toInt(string s) { int num; istringstream iss(s); iss >> num; return num; }
- ll toLLong(string s) { ll num; istringstream iss(s); iss >> num; return num; }
-
- #define inf 1e17
- #define mod 1000000007
-
- static const int maxn = 1e5 + 5;
- static const int logn = 18;
-
-
- inline ll bigMod(ll a, ll p, ll m)
- {
- if (p == 0) return 1 % m;
- if (p == 1) return a % m;
- if (p & 1) return (a % m * bigMod(a, p-1, m) % m) % m;
- ll ret = bigMod(a, p >> 1, m);
- return (ret % m * ret % m) % m;
- }
-
- inline ll modInverse(ll a, ll m)
- {
- return bigMod(a, m-2, m);
- }
-
- ll fact[maxn];
-
- inline ll nCr(ll n, ll r, ll p)
- {
- if (n < r) return 0;
- ll upor = fact[n];
- ll nich = (fact[r] * fact[n-r]) % p;
- nich = modInverse(nich, p);
- return (upor * nich) % p;
- }
-
- int main()
- {
- fact[0] = 1;
- for (int i = 1; i < maxn; i++) fact[i] = (i * fact[i-1]) % mod;
- int tc = read();
- FOR(tcase, tc)
- {
- int n = read();
- ll ncr = nCr(2*n, n, mod);
- ll divide = modInverse(n+1, mod);
- ll catalan = (ncr * divide) % mod;
- printf("%lld\n", catalan);
- }
- }
Monday, January 14, 2019
[UVa] 12887 - The Soldier's Dilemma
Labels:
Catalan Numbers,
Combinatorics,
UVa
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.