Author : Dipu Kumar Mohanto
CSE, Batch - 6
BRUR.
Problem Statement : Budget Travel
Source : toph.co
Category : Graph Theory
Algorithm : Min Cost Max Flow
Verdict : Accepted
- #include "bits/stdc++.h"
-
- using namespace std;
-
- static const int maxn = 1e3 + 5;
-
-
-
- struct edge
- {
- int to, flow, cap, cost, rev;
- edge(int to = 0, int flow = 0, int cap = 0, int cost = 0, int rev = 0) :
- to(to), flow(flow), cap(cap), cost(cost), rev(rev) {}
- };
-
- struct MinCostMaxFlow
- {
- int nodes;
- vector <int> prio, curflow, prevedge, prevnode, q, pot;
- vector <bool> inqueue;
- vector< vector<edge> > graph;
-
- MinCostMaxFlow() {}
-
- MinCostMaxFlow(int n) :
- nodes(n), prio(n, 0), curflow(n, 0), prevedge(n, 0),
- prevnode(n, 0), q(n, 0), pot(n, 0), inqueue(n, 0), graph(n) {}
-
- void addEdge(int source, int to, int capacity, int cost)
- {
- edge a = {to, 0, capacity, cost, (int)graph[to].size()};
- edge b = {source, 0, 0, -cost, (int)graph[source].size()};
- graph[source].push_back(a);
- graph[to].push_back(b);
- }
-
- void bellman_ford(int source, vector<int> &dist)
- {
- fill(dist.begin(), dist.end(), INT_MAX);
- dist[source] = 0;
- int qt=0;
- q[qt++] = source;
- for(int qh = 0;(qh-qt) % nodes != 0; qh++)
- {
- int u = q[qh % nodes];
- inqueue[u] = false;
- for(auto &e : graph[u])
- {
- if(e.flow >= e.cap) continue;
- int v = e.to;
- int newDist = dist[u] + e.cost;
- if(dist[v] > newDist)
- {
- dist[v] = newDist;
- if(!inqueue[v])
- {
- inqueue[v] = true;
- q[qt++ % nodes] = v;
- }
- }
- }
- }
- }
-
- pair<int, int> minCostFlow(int source, int dest, int maxflow)
- {
- bellman_ford(source, pot);
- int flow = 0;
- int flow_cost = 0;
- while(flow < maxflow)
- {
- priority_queue< pair<int, int>, vector< pair<int, int> >, greater< pair<int, int> > > q;
- q.push({0, source});
- fill(prio.begin(), prio.end(), INT_MAX);
- prio[source] = 0;
- curflow[source] = INT_MAX;
- while(!q.empty())
- {
- int d = q.top().first;
- int u = q.top().second;
- q.pop();
- if(d != prio[u]) continue;
- for(int i = 0; i < graph[u].size(); i++)
- {
- edge &e=graph[u][i];
- int v = e.to;
- if(e.flow >= e.cap) continue;
- int newPrio = prio[u] + e.cost + pot[u] - pot[v];
- if(prio[v] > newPrio)
- {
- prio[v] = newPrio;
- q.push({newPrio, v});
- prevnode[v] = u;
- prevedge[v] = i;
- curflow[v] = min(curflow[u], e.cap - e.flow);
- }
- }
- }
- if(prio[dest] == INT_MAX) break;
- for(int i = 0;i < nodes; i++) pot[i] += prio[i];
- int df = min(curflow[dest], maxflow - flow);
- flow += df;
- for(int v = dest; v!= source; v = prevnode[v])
- {
- edge &e = graph[ prevnode[v] ][ prevedge[v] ];
- e.flow += df;
- graph[v][e.rev].flow -= df;
- flow_cost += df * e.cost;
- }
- }
- return {flow, flow_cost};
- }
- };
-
- int desCost[maxn];
-
- int main()
- {
-
-
- int N, D;
- scanf("%d %d", &D, &N);
- MinCostMaxFlow mcmf(N+D+2);
- for (int i = 1; i <= D; i++) scanf("%d", &desCost[i+N]);
- for (int u = 1; u <= N; u++)
- {
- int prefers;
- scanf("%d", &prefers);
- for (int i = 1; i <= prefers; i++)
- {
- int v;
- scanf("%d", &v);
- v += N;
- mcmf.addEdge(u, v, 1, desCost[v]);
- mcmf.addEdge(v, u, 1, desCost[v]);
- }
- }
- if (D < N)
- {
- puts("-1");
- exit(0);
- }
- int S = 0;
- int T = N + D + 1;
- for (int v = 1; v <= N; v++)
- {
- mcmf.addEdge(S, v, 1, 0);
- mcmf.addEdge(v, S, 1, 0);
- }
- for (int u = N+1; u <= N+D; u++)
- {
- mcmf.addEdge(u, T, 1, 0);
- mcmf.addEdge(T, u, 1, 0);
- }
- pair <int, int> res = mcmf.minCostFlow(S, T, N);
- if (res.first != N) res.second = -1;
- printf("%d\n", res.second);
- }
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.