Author : Dipu Kumar Mohanto
CSE, Batch - 6
BRUR.
Problem Statement : 12888 - Count LCM
Source : UVA Online Judge
Category : Number Theory
Algorithm : Mobius Inversion Formula
Verdict : Accepted
- #include "bits/stdc++.h"
-
- using namespace std;
-
- #define FI freopen("in.txt", "r", stdin)
- #define FO freopen("out.txt", "w", stdout)
- #define FAST ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL)
-
- #define FOR(i, n) for (int i = 1; i <= n; i++)
- #define For(i, n) for (int i = 0; i < n; i++)
- #define ROF(i, n) for (int i = n; i >= 1; i--)
- #define Rof(i, n) for (int i = n-1; i >= 0; i--)
- #define FORI(i, n) for (auto i : n)
- #define REP(i, a, b) for (int i = a; i <= b; i++)
-
- #define ll long long
- #define ull unsigned long long
- #define vi vector <int>
- #define vl vector <ll>
- #define pii pair <int, int>
- #define pll pair <ll, ll>
- #define mk make_pair
- #define ff first
- #define ss second
- #define eb emplace_back
- #define em emplace
- #define pb push_back
- #define ppb pop_back
- #define All(a) a.begin(), a.end()
- #define memo(a, b) memset(a, b, sizeof a)
- #define Sort(a) sort(All(a))
- #define ED(a) Sort(a), a.erase(unique(All(a)), a.end())
- #define rev(a) reverse(All(a))
- #define sz(a) (int)a.size()
- #define max3(a, b, c) max(a, max(b, c))
- #define min3(a, b, c) min(a, min(b, c))
- #define maxAll(a) *max_element(All(a))
- #define minAll(a) *min_element(All(a))
- #define allUpper(a) transform(All(a), a.begin(), :: toupper)
- #define allLower(a) transform(All(a), a.begin(), :: tolower)
- #define endl '\n'
- #define nl puts("")
- #define ub upper_bound
- #define lb lower_bound
- #define Exp exp(1.0)
- #define PIE 2*acos(0.0)
- #define Sin(a) sin(((a)*PIE)/180.0)
- #define EPS 1e-9
-
- #include "ext/pb_ds/assoc_container.hpp"
- #include "ext/pb_ds/tree_policy.hpp"
- using namespace __gnu_pbds;
-
- template <typename T> using orderset = tree <T, null_type, less <T>, rb_tree_tag, tree_order_statistics_node_update>;
-
- #include "ext/rope"
- using namespace __gnu_cxx;
-
-
-
-
-
-
-
-
-
-
- #define trace1(x) cerr << #x << ": " << x << endl;
- #define trace2(x, y) cerr << #x << ": " << x << " | " << #y << ": " << y << endl;
- #define trace3(x, y, z) cerr << #x << ": " << x << " | " << #y << ": " << y << " | " << #z << ": " << z << endl;
- #define trace4(a, b, c, d) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << endl;
- #define trace5(a, b, c, d, e) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << endl;
- #define trace6(a, b, c, d, e, f) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << " | " << #f << ": " << f << endl;
-
- inline int setbit(int mask, int pos) { return mask |= (1 << pos); }
- inline int resetbit(int mask, int pos) { return mask &= ~(1 << pos); }
- inline int togglebit(int mask, int pos) { return mask ^= (1 << pos); }
- inline bool checkbit(int mask, int pos) { return (bool)(mask & (1 << pos)); }
-
- #define popcount(mask) __builtin_popcount(mask) // count set bit
- #define popcountLL(mask) __builtin_popcountll(mask) // for long long
-
- inline int read() { int a; scanf("%d", &a); return a; }
- inline ll readLL() { ll a; scanf("%lld", &a); return a; }
- inline double readDD() { double a; scanf("%lf", &a); return a; }
-
- template <typename T> string toString(T num) { stringstream ss; ss << num; return ss.str(); }
- int toInt(string s) { int num; istringstream iss(s); iss >> num; return num; }
- ll toLLong(string s) { ll num; istringstream iss(s); iss >> num; return num; }
-
- #define inf 1e17
- #define mod 1000000007
-
- static const int maxn = 1e6 + 5;
- static const int logn = 18;
-
- bool isPrime[maxn];
- vi prime;
-
- inline void seive()
- {
- memo(isPrime, 1);
- isPrime[0] = isPrime[1] = 0;
- for (int i = 4; i < maxn; i += 2) isPrime[i] = 0;
- for (int i = 3; i*i <= maxn; i += 2)
- {
- if (isPrime[i])
- {
- for (int j = i*i; j < maxn; j += i+i) isPrime[j] = 0;
- }
- }
- prime.eb(2);
- for (int i = 3; i < maxn; i += 2) if (isPrime[i]) prime.eb(i);
- }
-
- ll mobius[maxn];
-
- inline void mobiusCalc(int n)
- {
- FOR(i, n) mobius[i] = 1;
- int sqrtn = sqrt(n * 1.0);
- for (int p : prime)
- {
- if (p > sqrtn) break;
- int x = p * p;
- for (int j = x; j <= n; j += x) mobius[j] = 0;
- }
- for (int p : prime)
- {
- for (int j = p; j <= n; j += p) mobius[j] *= -1;
- }
- }
-
- inline ll get(ll n, ll d)
- {
- return n / d;
- }
-
- inline ll Count(ll a, ll b)
- {
- ll ming = min(a, b);
- ll ans = 0;
- for (int d = 1; d <= ming; d++)
- {
- ll add = mobius[d] * get(a, d) * get(b, d);
- ans += add;
- }
- return ans;
- }
-
- int main()
- {
- seive();
- mobiusCalc(maxn-3);
- int tc = read();
- FOR(tcase, tc)
- {
- ll a = readLL();
- ll b = readLL();
- printf("%lld\n", Count(a, b));
- }
- }
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.