Author : Dipu Kumar Mohanto
CSE, Batch - 6
BRUR.
Problem Statement : DCEPC13D - The Ultimate Riddle
Source : Spoj
Category : Number Theory, Combinatorics
Algorithm : Chinese Remainder Theorem (Coprime), Lucas Theorem
Verdict : Accepted
#include "bits/stdc++.h"
using namespace std;
#define FI freopen("in.txt", "r", stdin)
#define FO freopen("out.txt", "w", stdout)
#define FAST ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL)
#define FOR(i, n) for (int i = 1; i <= n; i++)
#define For(i, n) for (int i = 0; i < n; i++)
#define ROF(i, n) for (int i = n; i >= 1; i--)
#define Rof(i, n) for (int i = n-1; i >= 0; i--)
#define FORI(i, n) for (auto i : n)
#define ll long long
#define ull unsigned long long
#define vi vector <int>
#define vl vector <ll>
#define pii pair <int, int>
#define pll pair <ll, ll>
#define mk make_pair
#define ff first
#define ss second
#define eb emplace_back
#define em emplace
#define pb push_back
#define ppb pop_back
#define All(a) a.begin(), a.end()
#define memo(a, b) memset(a, b, sizeof a)
#define Sort(a) sort(All(a))
#define ED(a) Sort(a), a.erase(unique(All(a)), a.end())
#define rev(a) reverse(All(a))
#define sz(a) (int)a.size()
#define max3(a, b, c) max(a, max(b, c))
#define min3(a, b, c) min(a, min(b, c))
#define maxAll(a) *max_element(All(a))
#define minAll(a) *min_element(All(a))
#define allUpper(a) transform(All(a), a.begin(), :: toupper)
#define allLower(a) transform(All(a), a.begin(), :: tolower)
#define endl '\n'
#define nl puts("")
#define ub upper_bound
#define lb lower_bound
#define Exp exp(1.0)
#define PIE 2*acos(0.0)
#define Sin(a) sin(((a)*PIE)/180.0)
#define EPS 1e-9
// Important Functions
// mo compare function : friend bool operator < (mo p, mo q) { int pb = p.l / block; int qb = q.l / block; if (pb != qb) return p.l < q.l; return (p.r < q.r) ^ (p.l / block % 2); }
// factorial MOD inverse : ll inv[maxn]; inline ll factorialInverse() { inv[1] = 1; for (int i = 2; i < maxn; i++) inv[i] = (MOD – (MOD / i)) * inv[MOD % i) % MOD; }
/**
* uses of PBDS:
* 1) *X.find_by_order(k) : returns k'th element
* 2) X.order_of_key(k) : count total element less than k
* 3) All other operations same as set
**/
#include "ext/pb_ds/assoc_container.hpp"
#include "ext/pb_ds/tree_policy.hpp"
using namespace __gnu_pbds;
template <typename T> using orderset = tree <T, null_type, less <T>, rb_tree_tag, tree_order_statistics_node_update>;
/**
* uses of rope data structure:
* Initialize : rope <data_type> Rope;
* Insert single element : Rope.push_back()
* Insert a block of elements : Rope.insert(position after insert, newRope)
* Erase a block of elements : Rope.erase(starting position of deletion, size of deletion)
* Other Operations : Same as std::vector
* Iterator : Rope.mutable_begin(), Rope.mutable_end(), Rope.mutable_rbegin(), Rope.mutable_rend()
* Caution : Never use -- Rope.begin() iterator
**/
#include "ext/rope"
using namespace __gnu_cxx;
// rope <int> Rope;
// int dr[] = {1, -1, 0, 0}; // 4 Direction
// int dc[] = {0, 0, 1, -1};
// int dr[] = {0, 0, 1, -1, 1, 1, -1, -1}; // 8 Direction
// int dc[] = {1, -1, 0, 0, 1, -1, 1, -1};
// int dr[] = {-1, 1, -2, -2, -1, 1, 2, 2}; // knight Moves
// int dc[] = {-2, -2, -1, 1, 2, 2, 1, -1};
#define trace1(x) cerr << #x << ": " << x << endl;
#define trace2(x, y) cerr << #x << ": " << x << " | " << #y << ": " << y << endl;
#define trace3(x, y, z) cerr << #x << ": " << x << " | " << #y << ": " << y << " | " << #z << ": " << z << endl;
#define trace4(a, b, c, d) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << endl;
#define trace5(a, b, c, d, e) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << endl;
#define trace6(a, b, c, d, e, f) cerr << #a << ": " << a << " | " << #b << ": " << b << " | " << #c << ": " << c << " | " << #d << ": " << d << " | " << #e << ": " << e << " | " << #f << ": " << f << endl;
inline int setbit(int mask, int pos) { return mask |= (1 << pos); }
inline int resetbit(int mask, int pos) { return mask &= ~(1 << pos); }
inline int togglebit(int mask, int pos) { return mask ^= (1 << pos); }
inline bool checkbit(int mask, int pos) { return (bool)(mask & (1 << pos)); }
#define popcount(mask) __builtin_popcount(mask) // count set bit
#define popcountLL(mask) __builtin_popcountll(mask) // for long long
inline int read() { int a; scanf("%d", &a); return a; }
inline ll readLL() { ll a; scanf("%lld", &a); return a; }
inline double readDD() { double a; scanf("%lf", &a); return a; }
template <typename T> string toString(T num) { stringstream ss; ss << num; return ss.str(); }
int toInt(string s) { int num; istringstream iss(s); iss >> num; return num; }
ll toLLong(string s) { ll num; istringstream iss(s); iss >> num; return num; }
#define inf 1e17
#define mod 1000000007
static const int maxn = 1e6 + 5;
static const int logn = 18;
inline void extendedEuclidAlgorithm(ll a, ll b, ll &x, ll &y, ll &d)
{
if (b == 0)
{
x = 1;
y = 0;
d = a;
return;
}
extendedEuclidAlgorithm(b, a%b, x, y, d);
ll x1 = y;
ll y1 = x - (a / b) * y;
x = x1;
y = y1;
}
inline pll chineseRemainderTheorem(vl A, vl M)
{
if (sz(A) != sz(M)) return pll(-1, -1);
int n = sz(A);
ll a1 = A[0];
ll m1 = M[0];
for (int i = 1; i < n; i++)
{
ll a2 = A[i];
ll m2 = M[i];
ll p, q, d;
extendedEuclidAlgorithm(m1, m2, p, q, d);
ll x = (a1 * m2 * q + a2 * m1 * p) % (m1 * m2);
a1 = x;
m1 = m1 * m2;
}
if (a1 < 0) a1 += m1;
return pll(a1, m1);
}
inline ll bigMod(ll a, ll p, ll m)
{
if (p == 0) return 1 % m;
if (p == 1) return a % m;
if (p & 1) return (a % m * bigMod(a, p-1, m) % m) % m;
ll ret = bigMod(a, p>>1, m);
return (ret % m * ret % m) % m;
}
inline ll modInverse(ll a, ll m)
{
return bigMod(a, m-2, m);
}
ll fact[maxn];
inline ll nCr(ll n, ll r, ll p)
{
if (n < r) return 0;
ll upor = fact[n] % p;
ll nich = (fact[r] * fact[n-r]) % p;
nich = modInverse(nich, p);
return (upor * nich) % p;
}
ll lucas(ll n, ll r, ll p)
{
if (n == 0 and r == 0) return 1;
ll ni = n % p;
ll ri = r % p;
return (nCr(ni, ri, p) * lucas(n/p, r/p, p)) % p;
}
inline ll get_nCr(ll n, ll r, ll p)
{
fact[0] = 1;
for (int i = 1; i < p; i++) fact[i] = (i * fact[i-1]) % p;
return lucas(n, r, p);
}
inline vl primeFactor(ll num)
{
vl pf;
for (int i = 2; i < 50; i++) if (num % i == 0) pf.eb(i), num /= i;
return pf;
}
int main()
{
//FI;
int tc = read();
FOR(tcase, tc)
{
ll N = readLL();
ll R = readLL();
ll P = readLL();
vl pf = primeFactor(P);
vl mf;
for (ll p : pf)
{
ll m = get_nCr(N, R, p);
mf.eb(m);
}
pll crt = chineseRemainderTheorem(mf, pf);
printf("%lld\n", crt.ff);
}
}
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.